
Contributing to catlearn

Catlearn Research Group∗

August 20, 2016

This guide assumes you are able to checkout and commit changes to the
catlearn repository on R-Forge. If this is not true, read Theußl & Zeileis
(2009), or contact me for help.

Formal models are useful in psychology when they allow unambiguous com-
parison of the relative adequacy of theories across a broad range of phenomena
(Wills & Pothos, 2012). However, the goal of broad comparison is not achiev-
able by any one individual within a reasonable amount of time. Catlearn is
designed to solve this problem by enabling efficient distributed collaboration.

Catlearn1 is a framework and archive for formal modeling in psychology. It
makes use of R’s in-built documentation system to build an archival record of
Canonical Independently Replicated Phenomena (CIRP), an archive of formal
models implemented as stateful list processors, and an archive of simulations. It
is intended to supplement, rather than supplant, traditional publication routes.
In particular, the documentation within catlearn is concise to the point of
terseness, and does not obviate the need for more fulsome descriptions provided
through traditional publication routes.

Here’s how to use catlearn to supplement different types of research pub-
lication:

Publication of independent replication If this is the first time this phe-
nomenon has been replicated, write a new CIRP for it (Section 1). Cite the
CIRP function name in your article. Write the corresponding OAT function
(Section 2) and cite that, too. If you have conducted an additional replication
of a CIRP already in catlearn, edit the CIRP documentation to include a ci-
tation of your manuscript, and cite the existing CIRP function name in your
manuscript.

Review publication If you have identified one or more CIRP not already
registered within catlearn, register them and cite those registrations in your
review article. Do the same for the corresponding OAT functions.

Modeling publication Make the models available within catlearn (Section
3), and cite the model function name in your manuscript. Archive your simula-
tions (Section 5) and input representations (Section 4). Register each simulation

∗Email: andy@willslab.co.uk
1Catlearn was once an acronym (CATegory LEARNing), but should now be treated as an

arbitrary proper noun

1

in the Grid (Section 6). Cite the unique simulation IDs from the Grid in your
article.

1 Writing a CIRP entry

1.1 What’s a CIRP?

A CIRP is a canonical independently replicated phenomenon. An independent
replication is defined as one with no shared authors that is as close to being a
direct replication as the published literature will allow. A replication is success-
ful if the key results are statistically significant, and in the same direction as
the original study. Of course, many phenomena have boundary conditions. In
the CIRP approach, it’s a replication if, when you run the experiment the way
the original authors did, you get the results they did.

A CIRP is canonical because it involves the selection of a replication that is
representative of what is known empirically, and is sufficiently well specified in
terms of psychological stimulus representation, and empirical results, to allow
meaningful modeling. In the registration of a CIRP, an explanation of the choice
of CIRP is provided, so that the choices are transparent and open to rational
challenge.

1.2 How do I write a CIRP entry?

A CIRP is added to catlearn as a data object. For a concrete example, type
?shin92. To register a new CIRP, create the appropriate data frame within
R, name it by the first author and two-digit year (e.g. shin92), and save it as
RData with the that name.

Next, write the help file. This is in the Rd format. The Rd format is straight-
forward and well-documented (R Foundation, 2016), although normally it is eas-
iest to modify a Rd file created by others, which are available in the catlearn

R-Forge archive, in the man directory.
A CIRP Rd file has the following principal sections:

Description A one-paragraph summary of the CIRP.

Format A description of the content of each of the columns of the dataset.

Details A brief summary of how the CIRP was derived, including a reference
for a more detailed derivation where appropriate. Also, a brief summary of the
structure of the experiment (for fuller details the reader is expected to read the
original journal article).

Source States the reference from which the data were drawn.

References Contains any other references used in the help file.

2

Author Your name and email address.

Finally, add the data file and Rd document to the catlearn package, and
commit to R-Forge.

2 Writing an OAT function

Every CIRP should have a corresponding OAT (Ordinal Adequacy Test) func-
tion. An OAT function determines whether the output of a simulation-archive
function reproduces the ordinal results defined in the CIRP documentation.
Only one OAT function per CIRP is required, as simulation-archive functions
output their predictions in the same format and order as the CIRP function.
OAT functions should have the same name as the CIRP function, suffixed by
”oat”. For an example of an OAT function, see shin92oat.

An OAT function takes as input a set of model predictions. It’s output
is Boolean, indicating whether the OAT has been passed (TRUE) or failed
(FALSE).

OAT functions also provide a convenient place to locate the calculation of
summary results, and the xtdo parameter provides a standard way of doing
this. For example, shin92exalcove() produces the full CIRP output, but
shin92oat(shin92,xtdo=TRUE) produces a user-friendly summary of the main
results.

3 Writing a model implementation

Models are implemented in catlearn as stateful list processors. The concept of
a stateful list processor is explained below, using the slpALCOVE model imple-
mentation as a concrete example.

Coding of the model function itself is at the discretion of the author, but
for cross-compatibility with other parts of the catlearn package, the input,
output, and basic operating procedures of the model implementation must follow
the general schema provided in this section. If your model is computationally
intensive, consider writing it in a compiled language (e.g. C++ with the Rcpp

package)2. For information on Rcpp see Eddelbuettel & Francois (2011) or
Eddelbuettel (2013).

Figure 1 illustrates the basic operating principles of a stateful list processor.
It takes two primary inputs from the user: st and tr. Input st (“state”) is a
list containing the model parameters and the model’s initial state. Object tr

(“training”) is a matrix, where each row is one event that is presented to the
model. The nature of a list-processor architecture is that the model processes
all of these events in the order they are presented.

The first column of tr, ctrl (“control”), is normally zero, but can be set to
other values to change the mode of operation of the model mid-list. Standard
options are: 1 = reset the model to its initial state, 2 = freeze learning on
the current trial. After ctrl, there are a variable number of optional columns
that can contain any numerical information the user wishes. These columns
are ignored by the list processor; to achieve this the user must set colskip equal

2Also consider providing an option to run across multiple CPU cores, and/or to use a GPU.

3

out <- slpALCOVE(st,tr)

ctrl cond block trial x1 x2 t1 t2 m1 m2
 1 1 1 1 0.8 0.4 -1 1 0 0
 0 1 1 2 0.4 0.8 1 -1 0 0
 .
 2 1 9 1 0.3 0.9 1 -1 0 0
 .

w = 0.1 .7 0.1 -.8
 0.1 -.7 0.1 .8

 alpha = (.8 .2)

p1 p2
.5 .5
.6 .4
.
.9 .1
.

()

 c = 2.3
 phi = 4.4
 lw = 0.2
 la = 0.1
 r = 1
 q = 1

h = .4 .8 .8 .4
 .4 .4 .8 .8

w = 0 0 0 0
 0 0 0 0

 alpha = (.5 .5)

 colskip = 4

()
()

tr st

out

catlearn: slpALCOVE

Figure 1: ALCOVE implemented as a stateful list processor in catlearn. Image
author: Andy J. Wills. CC BY 4.0.

the number of optional columns, plus one. After these optional columns, the
remaining columns contain the input representation.

The simulation is run with the command slpModelName(st,tr), which can
have additional non-compulsory arguments. When the simulation completes it
returns a list, as illustrated in Figure 1. The returned list has two manda-
tory components: the model’s output on each trial (p), and the model’s final
state. The returning of the final model state is the property that makes the
implementation a stateful list processor.

Simulation functions must provide concise self-contained documentation for
their use with their Rd help file. For an example of the expected format, type
?slpALCOVE.

When naming your simulation function, please use, slpModelName, replacing
ModelName with a short comprehensible name for the implemented model.

4 Writing an input-representation function

An input-representation function generates, for one or models, an input repre-
sentation for a specific CIRP. It is a mandatory part of the catlearn specifica-
tion that model input representations are kept separate from both CIRP entries
and model implementations. An input-representation function should have a
name that begins with the name of the CIRP to be modeled. For example, the
shin92 CIRP has the input-representation function shin92train.

Input-representation functions must be documented within their Rd help
function. The documentation format is the same as the CIRP entries, with the
following minor differences:

Description Single-paragraph summary of the command’s purpose.

Usage List of the arguments taken by the function, and their default values.

Arguments Concise description of every argument specified in Usage.

4

Details Documents the meaning of the columns of the matrix produced by
the command.

For an example of an input-representation function, see ?shin92train.

5 Writing a simulation-archive function

A simulation-archive function runs a simulation of one CIRP with one model.
The function’s name should include both the CIRP name and the model name,
in that order. For example, the simulation of the shin92 CIRP with the
slpALCOVE model implementation is named shin92exalcove, the “ex” indi-
cating the particular variant of the ALCOVE model used (exemplar variant).

Simulation-archive functions must take the argument params, a set of model
parameters, and params must have default values. These defaults define the
archived simulation. Defining them thus allows others to straightforwardly re-
run the simulation with different parameters, and examine the results. The fact
that these parameters are available to the user also makes it possible to use the
simulation-archive function as the subject of a model-fitting procedure. params
should not include fixed parameters, whether these are fixed because they are
universal constants of the model, or because they are determined (formally or
otherwise) by the combination of CIRP and model.3 However, any parameter
whose value is at the discretion of the modeler should be included. This includes
parameters that have not been formally optimized, but which can nevertheless
differ between CIRPs at the discretion of the modeler.

The output of a simulation-archive function is a set of model predictions in
the same format and order as the CIRP that is the subject of the simulation. In
their default form, simulation-archive functions must complete their operation
without any interaction from the user.

The help file has the normal sections: Description, Usage, Arguments, De-
tails, Author, References. There are two types of things that are important to
include in the Details section of the simulation archive: (1) information that
could be derived from the source code but is more convenient if also described
in the help file, (2) information that is important to replicating the simulation
but is not in the source code. Under the first heading, it is helpful to specify the
value of any model parameter not made available through the params argument.

Under the second heading, the most likely entry for the help file would be
details of how the values in argument param were decided (e.g. non-linear
optimization). Please consider archiving your process of model fitting within
catlearn. Do this using a separate function. For example a simulation-archive
function jones2017covis would have the model-fitting function:

jones2017covis.opt.

5

M & S (1978)

S, H & J (1961)

A
LC

O
VE

C
O

VI
S

1 1

1 NT

p
ro

to
-A

LC
O

VE

0

0
...

...

... ...

.

.

. .

. .

Figure 2: Illustration of the concept of the “Grid”. Columns represent formal
models, rows represent empirical phenomena. The cell contents indicate: ordinal
success of model (1), ordinal failure of model (0), model not tested (NT). Image
author: Andy J. Wills. CC BY 4.0.

6 Writing a Grid entry

6.1 What’s the “Grid”?

The Grid is a data object that provides a central database of all completed
simulations included within catlearn. The term “the Grid” derives from an
illustration of the concept of broad model comparisons (Figure 2).

The Grid is stored within catlearn as a long-format data frame. Load
it with the command data(thegrid). Each row of thegrid is one completed
simulation. The columns record, in turn, a unique ID number for the simulation,
the CIRP simulated (e.g. shin92), a descriptive name for the model tested
(e.g. “protoALCOVE”), the result of the ordinal adequacy test (1 or 0), the
command for the simulation archive (e.g. shin92exalcove) and the command
for the OAT (e.g. shin92oat).

In order that The Grid can be automatically checked for accuracy, it is
essential that the combination of the simulation-archive command and the OAT
command produce the result of the OAT. For example, the following command
must always produce the output “1” or “0”:

shin92oat(shin92exalcove())

6.2 How do I write a Grid entry?

Just add a row to the data frame in the normal way, and commit the updated
version to R-Forge.

References

Eddelbuettel, D. (2013). Seamless R and C++ integration with Rcpp. New
York: Springer.

3For example, one of the parameters of the ALCOVE model depends on whether the stimuli
are integral or separable. Hence, this parameter is determined by the known properties of the
CIRP, and should not be included in params.

6

Eddelbuettel, D., & Francois, R. (2011). Rcpp: Seamless R and C++ integra-
tion. Journal of Statistical Software, 40 , 1–18.

R Foundation. (2016). Writing R documentation files. https://

cran.r-project.org/doc/manuals/r-release/R-exts.html#Writing

-R-documentation-files.

Theußl, S., & Zeileis, A. (2009). Collaborative software development using
R-Forge. The R Journal , 1 , 9–14.

Wills, A. J., & Pothos, E. M. (2012). On the adequacy of current empirical
evaluations of formal models of categorization. Psychological Bulletin, 138 ,
102–125.

LICENSE The text of this document is licensed under a Creative Commons
Attribution 4.0 International license (for the Figures, see the Figure legends).
catlearn is distributed under the terms of the GNU General Public License,
either Version 2, June 1991 or Version 3, June 2007.

ATTRIBUTION Please attribute the text of this document to the Catlearn
Research Group. Current and previous contributors to the CRG: Andy J. Wills,
Garret O’Connell, C.E.R. Edmunds, and Angus B. Inkster.

7

